HALLEY'S COMET - NUMERICAL CALCULATION OF ORBIT

Link to: physicspages home page.

To leave a comment or report an error, please use the auxiliary blog and include the title or URL of this post in your comment.

Post date: 4 Jun 2023.

We can use Kepler's laws to generate numerical solutions for orbits on a computer. Carroll & Ostlie provide a program called *Orbit* (in Fortran or C++) that produces textual output that can be input to a spreadsheet or graphing program. However, this is a bit primitive, so I decided to implement a similar routine in Maple, since Maple has built-in plotting features.

The idea is to simulate a complete orbit of a planet by calculating its distance r from the focus of the ellipse (essentially, the distance from the Sun) as a function of the angle θ from perihelion. The equation of an ellipse is:

$$r = \frac{a\left(1 - e^2\right)}{1 + e\cos\theta} \tag{1}$$

Given the planet's period P we can calculate its semimajor axis a from Kepler's third law:

$$P^2 = \frac{4\pi^2}{GM}a^3\tag{2}$$

so the equation 1 becomes

$$r = \left(\frac{GMP^2}{4\pi^2}\right)^{1/3} \frac{\left(1 - e^2\right)}{1 + e\cos\theta} \tag{3}$$

To use this formula in a numerical solution, we need to know how much θ changes for a given time increment dt. We can use Kepler's second law in the form

$$\frac{dA}{dt} = \frac{L}{2\mu} \tag{4}$$

which gives the rate at which area is swept out in terms of the constant total angular momentum L and reduced mass μ . The angular momentum is

$$L = \mu \sqrt{GMa(1 - e^2)} \tag{5}$$

The area increment dA is given in terms of $d\theta$ by

$$dA = \frac{r \, d\theta}{2\pi r} \pi r^2 = \frac{1}{2} r^2 d\theta \tag{6}$$

so we get

$$d\theta = \frac{L}{\mu r^2} dt = \frac{\sqrt{GMa(1 - e^2)}}{r^2} dt \tag{7}$$

The numerical solution divides the period P up into n equal time intervals dt, and starts with r at perihelion and $\theta=0$. We then use the value of r to calculate $d\theta$, add this to the current value of θ and calculate the next value of θ from 3. We then use the new value of θ to get the next θ and so on until we've covered a complete period.

The Maple code for doing this is:

```
with(plots):
G := 0.6673e-10;
AU := 0.14959787066e12;
M_sun := 0.19891e31;
yr := 31558145.0;
rad2deg := 180/Pi;
secsYear := 365.25*(3600*24);
orbit := proc (M_strsun, a_AU, e, n)
local M_star, a, P, dt, t, theta, LoM, r, i, dtheta;
M__star := M__strsun*M__sun;
a := a_AU*AU;
P := sqrt(4*Pi^2*a^3/(G*M__star));
dt := P/(n-1);
t := Array(0 ... n, (i) -> i*dt);
r := Array(0 .. n, datatype = float);
theta := Array(0 .. n, datatype = float);
theta[0] := 0.;
LoM := sqrt(G*M_star*a*(1-e^2));
for i from 0 to n-1 do
  r[i] := a*(1-e^2)/(1+e*cos(theta[i]));
  dtheta := LoM*dt/r[i]^2;
  theta[i+1] := evalf(theta[i]+dtheta);
  if 0 < i and 1.0 < r[i]/AU and r[i-1]/AU < 1.0 then
    print("Passes 1 AU at t = ", evalf(t[i]/secsYear))
  end if
end do;
r[n] := a*(1-e^2)/(1+e*cos(theta[n]));
theta := theta*rad2deg;
r := r/AU;
```

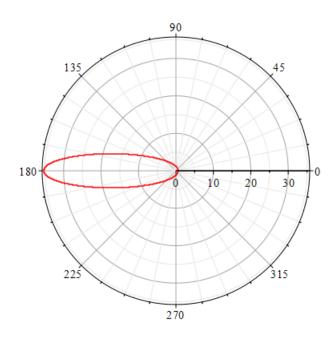


FIGURE 1. Orbit of Halley's comet. Radial distance in AU.

```
print(polarplot(r, theta, angularunit = degrees,colour=red));
print(plot(t/secsYear, r, labels = ["t (years)", "r (AU)"],colour=blue))
end proc;
```

The code pretty much just implements the algorithm given above. The Maple procedure *orbit* on line 8 takes as its arguments the mass of the central star in solar masses, the semimajor axis of the planet in AU, the eccentricity e and the number of time steps n. It then converts these quantities into SI units using the conversion factors given at the start, creates arrays for the time t, the radius r and the angle θ , calculates L/μ (as LoM), and then enters a for loop to calculate r and $d\theta$ for each time increment. The 'if' statement finds the time at which the planet crosses from r < 1 AU to r > 1 AU and prints this out.

After the loop, we calculate the final value of r, convert θ and r to degrees and AU, respectively, and print out a couple of plots. Fig. 1 is a polar plot of r as a function of θ , so it shows the elliptical orbit. Fig. 2 graphs r as a function of t (the latter in years) for one complete period.

For Halley's comet, P=76 years and e=0.9673 from which we find a=17.943 AU. If we input these values (along with M_strsun = 1 since the central star is the Sun), and choose n=10000 time increments, we get the time at which the comet first crosses r=1 AU after perihelion as t=0.1064 years or around 39 days.

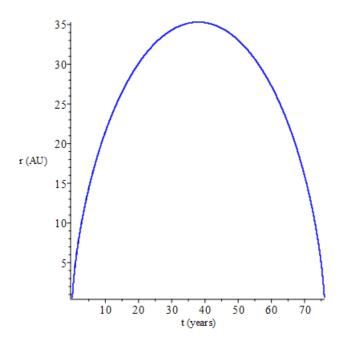


FIGURE 2. Distance of Halley's comet from the Sun, in AU.

PINGBACKS

Pingback: Elliptical orbits - numerical simulation

Pingback: Halley's comet - an application of Kepler's laws Pingback: Oppositions of Mars - numerical calculation