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We can use Kepler’s laws to generate numerical solutions for orbits on

a computer. Carroll & Ostlie provide a program called Orbit (in Fortran
or C++) that produces textual output that can be input to a spreadsheet or
graphing program. However, this is a bit primitive, so I decided to imple-
ment a similar routine in Maple, since Maple has built-in plotting features.

The idea is to simulate a complete orbit of a planet by calculating its
distance r from the focus of the ellipse (essentially, the distance from the
Sun) as a function of the angle θ from perihelion. The equation of an ellipse
is:

r =
a
(
1− e2)

1+ ecosθ
(1)

Given the planet’s period P we can calculate its semimajor axis a from
Kepler’s third law:

P 2 =
4π2

GM
a3 (2)

so the equation 1 becomes

r =

(
GMP 2

4π2

)1/3 (1− e2)
1+ ecosθ

(3)

To use this formula in a numerical solution, we need to know how much
θ changes for a given time increment dt. We can use Kepler’s second law
in the form

dA

dt
=

L

2µ
(4)

which gives the rate at which area is swept out in terms of the constant total
angular momentum L and reduced mass µ. The angular momentum is

L= µ
√
GMa(1− e2) (5)

The area increment dA is given in terms of dθ by
1

https://physicspages.com
https://physicspagescomments.wordpress.com
http://physicspages.com/pdf/Astrophysics/Kepler's%20laws.pdf
http://physicspages.com/pdf/Astrophysics/Ellipses.pdf


HALLEY’S COMET - NUMERICAL CALCULATION OF ORBIT 2

dA=
r dθ

2πr
πr2 =

1
2
r2dθ (6)

so we get

dθ =
L

µr2dt=

√
GMa(1− e2)

r2 dt (7)

The numerical solution divides the period P up into n equal time intervals
dt, and starts with r at perihelion and θ = 0. We then use the value of r to
calculate dθ, add this to the current value of θ and calculate the next value
of r from 3. We then use the new value of r to get the next dθ and so on
until we’ve covered a complete period.

The Maple code for doing this is:
with(plots):
G := 0.6673e-10;
AU := 0.14959787066e12;
M__sun := 0.19891e31;
yr := 31558145.0;
rad2deg := 180/Pi;
secsYear := 365.25*(3600*24);
orbit := proc (M__strsun, a__AU, e, n)
local M__star, a, P, dt, t, theta, LoM, r, i, dtheta;
M__star := M__strsun*M__sun;
a := a__AU*AU;
P := sqrt(4*Pi^2*a^3/(G*M__star));
dt := P/(n-1);
t := Array(0 .. n, (i) -> i*dt);
r := Array(0 .. n, datatype = float);
theta := Array(0 .. n, datatype = float);
theta[0] := 0.;
LoM := sqrt(G*M__star*a*(1-e^2));
for i from 0 to n-1 do
r[i] := a*(1-e^2)/(1+e*cos(theta[i]));
dtheta := LoM*dt/r[i]^2;
theta[i+1] := evalf(theta[i]+dtheta);
if 0 < i and 1.0 < r[i]/AU and r[i-1]/AU < 1.0 then
print("Passes 1 AU at t = ", evalf(t[i]/secsYear))

end if
end do;
r[n] := a*(1-e^2)/(1+e*cos(theta[n]));
theta := theta*rad2deg;
r := r/AU;
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FIGURE 1. Orbit of Halley’s comet. Radial distance in AU.

print(polarplot(r, theta, angularunit = degrees,colour=red));
print(plot(t/secsYear, r, labels = ["t (years)", "r (AU)"],colour=blue))
end proc;

The code pretty much just implements the algorithm given above. The
Maple procedure orbit on line 8 takes as its arguments the mass of the
central star in solar masses, the semimajor axis of the planet in AU, the
eccentricity e and the number of time steps n. It then converts these quan-
tities into SI units using the conversion factors given at the start, creates
arrays for the time t, the radius r and the angle θ, calculates L/µ (as LoM),
and then enters a for loop to calculate r and dθ for each time increment.
The ’if’ statement finds the time at which the planet crosses from r < 1 AU
to r > 1 AU and prints this out.

After the loop, we calculate the final value of r, convert θ and r to degrees
and AU, respectively, and print out a couple of plots. Fig. 1 is a polar plot
of r as a function of θ, so it shows the elliptical orbit. Fig. 2 graphs r as a
function of t (the latter in years) for one complete period.

For Halley’s comet, P = 76 years and e = 0.9673 from which we find
a = 17.943 AU. If we input these values (along with M__strsun = 1 since
the central star is the Sun), and choose n = 10000 time increments, we
get the time at which the comet first crosses r = 1 AU after perihelion as
t= 0.1064 years or around 39 days.
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FIGURE 2. Distance of Halley’s comet from the Sun, in AU.
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