HALLEY’S COMET - NUMERICAL CALCULATION OF ORBIT
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We can use Kepler’s laws to generate numerical solutions for orbits on
a computer. Carroll & Ostlie provide a program called Orbit (in Fortran
or C++) that produces textual output that can be input to a spreadsheet or
graphing program. However, this is a bit primitive, so I decided to imple-
ment a similar routine in Maple, since Maple has built-in plotting features.

The idea is to simulate a complete orbit of a planet by calculating its
distance r from the focus of the ellipse (essentially, the distance from the
Sun) as a function of the angle ¢ from perihelion. The equation of an ellipse
is:

" T T ecosh
Given the planet’s period P we can calculate its semimajor axis a from

Kepler’s third law:
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To use this formula in a numerical solution, we need to know how much

 changes for a given time increment dt. We can use Kepler’s second law
in the form
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which gives the rate at which area is swept out in terms of the constant total
angular momentum L and reduced mass . The angular momentum is

L=pu\/GMa(1—e?) 5)

The area increment d A is given in terms of df by
1
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The numerical solution divides the period P up into n equal time intervals
dt, and starts with r at perihelion and § = 0. We then use the value of 7 to
calculate df, add this to the current value of 6 and calculate the next value
of r from (3| We then use the new value of r to get the next dfl and so on
until we’ve covered a complete period.

The Maple code for doing this is:

with(plots):

G := 0.6673e-10;

AU := 0.14959787066e12;
M__sun := 0.19891e31;
yr := 31558145.0;
rad2deg := 180/Pi;

secsYear := 365.25%(3600%24) ;

orbit := proc (M__strsun, a__AU, e, n)

local M__star, a, P, dt, t, theta, LoM, r, i, dtheta;
M__star := M__strsun*M__sun;

a := a__AUx*AU;

P := sqrt(4xPi~2*a~3/(G*M__star));

dt := P/(n-1);
t Array(0 .. n, (i) -> ixdt);
r := Array(0 .. n, datatype = float);
theta := Array(0 .. n, datatype = float);
thetal0] := 0.;
LoM := sqrt(G*M__star*xax*x(1-e~2));
for 1 from 0 to n-1 do
r[i] := ax(1-e~2)/(l+excos(thetalil));
dtheta := LoMxdt/r[i]l~2;
theta[i+1] := evalf(theta[i]l+dtheta);
if 0 < i and 1.0 < r[i]/AU and r[i-11/AU < 1.0 then
print("Passes 1 AU at t = ", evalf(t[i]/secsYear))
end if
end do;
r[n] := ax(1-e~2)/(l+excos(thetaln]));
theta := thetaxrad2deg;
r := r/AU;
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FIGURE 1. Orbit of Halley’s comet. Radial distance in AU.

print (polarplot(r, theta, angularunit = degrees,colour=red));
print (plot(t/secsYear, r, labels = ["t (years)", "r (AU)"],colour=blue))
end proc;

The code pretty much just implements the algorithm given above. The
Maple procedure orbit on line 8 takes as its arguments the mass of the
central star in solar masses, the semimajor axis of the planet in AU, the
eccentricity e and the number of time steps n. It then converts these quan-
tities into SI units using the conversion factors given at the start, creates
arrays for the time ¢, the radius r and the angle 6, calculates L/ (as LoM),
and then enters a for loop to calculate r and df for each time increment.
The ’if” statement finds the time at which the planet crosses from » < 1 AU
to r > 1 AU and prints this out.

After the loop, we calculate the final value of r, convert ¢ and r to degrees
and AU, respectively, and print out a couple of plots. Fig. [I]is a polar plot
of r as a function of 6, so it shows the elliptical orbit. Fig. [2| graphs r as a
function of ¢ (the latter in years) for one complete period.

For Halley’s comet, P = 76 years and e = 0.9673 from which we find
a = 17.943 AU. If we input these values (along with M__strsun = 1 since
the central star is the Sun), and choose n = 10000 time increments, we
get the time at which the comet first crosses » = 1 AU after perihelion as
t = 0.1064 years or around 39 days.
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FIGURE 2. Distance of Halley’s comet from the Sun, in AU.
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